
Int J Theor Phys (2010) 49: 3050–3060
DOI 10.1007/s10773-009-0234-4

States as Morphisms

Ferdinand Chovanec · Roman Frič
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Abstract Using elementary categorical methods, we survey recent results concerning D-
posets (equivalently effect algebras) of fuzzy sets and the corresponding category ID in
which states are morphisms. First, we analyze the canonical structures carried by the unit
interval I = [0,1] as the range of states and the impact of “states as morphisms” on the
probability domains. Second, we analyze categories of various quantum and fuzzy struc-
tures and their relationships. Third, we describe some basic properties of ID and show that
traditional probability domains such as fields of sets and bold algebras can be viewed as full
subcategories of ID and probability measures on fields of sets and states on bold algebras be-
come morphisms. Fourth, we discuss the categorical aspects of the transition from classical
to fuzzy probability theory. We conclude with some remarks about generalized probability
theory based on ID.

Keywords D-poset · State · Fuzzy probability theory · Probability domain · ID-poset ·
Algebraic quantum structure · Categorical methods · Epireflection

1 Introduction

Basic notions in probability theory are random events, observables (dual maps to random
variables) and probability measures. To employ categorical methods, we redefine these basic
notions in such a way that events become an object and both the observables and the prob-
ability measures become morphisms acting on such objects. To model properties of random
events, in generalized probability theory many algebraic structures have been considered,
see for example the well-known monograph [9] and the illuminating surveys [10, 28]. In the
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present paper we study random events mainly from the viewpoint of “states as morphisms”.
Undoubtedly, such approach has an impact on the “language” and the formalism, but we
hope that the (elementary) categorical approach and methods provide a tool to put things
into a perspective and to ask “good” questions. Final sections of the paper are devoted to
various aspects of fuzzy (or operational) probability, see [3, 4, 15, 17, 19, 21, 25].

2 Range of states

In the classical, as well as in the generalized probability, a state is a mapping p from a
probability domain into I = [0,1] preserving the structure of the domain only to some ex-
tent. In the classical case the domain is a σ -field of subsets and p preserves the order, but
p is additive which means that p(A ∪ B) = p(A) + p(B) does not hold in general, e.g.,
p(A ∪ A) = p(A) �= p(A)+ p(A) for p(A) > 0. Similarly, in case of a Łukasiewicz tribe (a
bold algebra) X ⊆ IX , p(u ⊕ v) = p(u) + p(v), u,v ∈ X , does not hold in general.

Question 2.1 Is there a category in which traditional probability domains (classical and
fuzzy) are reorganized into objects and states are reorganized into structure preserving mor-
phisms?

Of course, we have in mind a category in which the reorganized traditional probability
domains form distinguished subcategories. We claim that the answer is YES, it is the cate-
gory ID of D-posets of fuzzy sets as objects and sequentially cotinuous D-homomorphisms
as morphisms. The range of states plays a key role: I carrying a suitable structure cogener-
ates the category ID.

Observation 2.2 If a state is a morphism, then its range I is an object. This of course means
that first of all we have to study the particular structures of I .

Observation 2.3 I carries many natural structures. Some of them are fundamental when
having in mind properties preserved by all states: order, the top and bottom elements, “dif-
ference”, convergence of sequences (indeed, the Lebesgue Dominated Convergence Theo-
rem means that if a sequence of measurable [0,1]-valued or {0,1}-valued function pointwise
converges, then the limit function is measurable and its integral is the limit of integrals of the
elements of the sequence and hence, in particular, each probability measure is sequentially
continuous), . . . .

Observation 2.4 Structures preserved by all states should characterize probability do-
mains.

Observation 2.5 The structure of traditional probability domains and the structure of the
objects of the new category should be “the same”.

This leads to D-posets of fuzzy sets. As shown in Frič [12, 15–17, 19] and Papčo [24–
26], ID is a suitable category in which basic notions of a probability theory having quantum
character can be defined in a natural way. Generalized probability has been studied also in
the realm of D-posets, see [7, 8, 14, 16, 22, 23]. In the next section we study D-posets in a
broader context of algebraic quantum structures, cf. [9].
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Fig. 1 Hasse diagram of
structures

3 D-posets

A difference poset (a D-poset, in short) is a quintuple (P,≤,�,0P ,1P ), where P is a par-
tially ordered set with the least element 0P and the greatest one 1P , � is a partial binary
operation on P , called a difference, such that b � a is defined if and only if a ≤ b, and the
following axioms are assumed

(D1) a � 0P = a for each a ∈ P ;
(D2) If a ≤ b ≤ c, then c � b ≤ c � a and (c � a) � (c � b) = b � a.

A lattice ordered D-poset (P,∨,∧,�,0P ,1P ) is called a D-lattice.
For any element a in a D-poset P , the element 1P � a is called the orthosupplement

of a and is denoted by a⊥. The unary operation ⊥ is an involution and an order reversing
operation on P , i.e., a⊥⊥ = a, and, if a � b then b⊥ � a⊥.

In a D-poset, we can define a partial binary operation (orthosummation) ⊕ dual to the
operation � as follows:

a ⊕ b = (b⊥ � a)⊥, for a � b⊥.

The orthosummation ⊕ is commutative, associative and a ⊕ a⊥ = 1P .
We say that two elements a, b from a D-poset P are

(i) orthogonal, and write a ⊥ b, if a � b⊥;
(ii) compatible, and write a ↔ b, if there exist elements c, d ∈ P such that d � a � c,
d � b � c and c � a = b � d (equivalently c � b = a � d).

If P is a D-lattice, then a ↔ b if and only if (a ∨ b) � a = b � (a ∧ b).
D-posets generalize Boolean algebras cf. [29], orthomodular lattices and posets cf. [27],

orthoalgebras cf. [11], as well as MV-algebras cf. [6]. The hierarchy of these structures can
be schemed by the following Haase diagram (Fig. 1), where each vertice represents the cor-
responding algebraic structure and each edge represents a generalization. To the left are the
so-called regular structures (recall that a structure is said to be regular if a ≤ a⊥ implies
a = 0). According to this hierarchy, each Boolean algebra is an orthomodular lattice, each
orthomodular lattice is an orthomodular poset and each orthomodular poset is an orthoal-
gebra. Further, each orthoalgebra is a D-poset, each orthomodular lattice is a D-lattice and
each Boolean algebra is an MV-algebra. To the right, each MV-algebra is a D-lattice and
each D-lattice is a D-poset. Note that fields of sets and bold algebras are special Boolean
algebras and MV-algebras, respectively. Within the difference posets theory, a detailed de-
scription of these structures and their the relationships can be found in [7].
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Fig. 2 Example 3.2

Let P and T be D-posets. A mapping w : P → T is called a D-homomorphism of P
into T if the following conditions are satisfied

(DH1) w(1P ) = 1T ;
(DH2) If a, b ∈ P, b ≤ a, then w(a) ≤ w(b);
(DH3) If a, b ∈ P , b ≤ a, then w(b � a) = w(b) � w(a).

A D-homomorphism w : P → T is called a σ -D-homomorphism if, moreover, the fol-
lowing condition holds

(DH4) If (an)
∞
n=1 ⊆ P , an ↗ a, a ∈ P , (i.e., an � an+1 for any n ∈ N and a = ∨∞

n=1 an),
then w(an)↗ w(a).

The following properties result directly from the definition of a D-homomorphism

(i) w(0P ) = 0T ;
(ii) w(a⊥) = (w(a))⊥ for any a ∈ P ;
(iii) If a ⊥ b then w(a) ⊥ w(b) and w(a ⊕ b) = w(a) ⊕ w(b);
(iv) If a ↔ b then w(a) ↔ w(b).

Recall that an orthoalgebra [11] is a set O containing two special elements 0,1 and
equipped with a partially defined binary operation ⊕ satisfying the following conditions for
all a, b, c ∈ O:

(O1) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a (commutativity);
(O2) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a (associativity);
(O3) For any a ∈ O there exists a unique b ∈ O such that a ⊕ b is defined and a ⊕ b = 1

(orthosupplementation);
(O4) If a ⊕ a is defined, then a = 0 (consistency).

Theorem 3.1

(i) Let w : O1 → O2 be a D-homomorphism of an orthoalgebra O1 into an orthoalgebra
O2. Then w is an orthoalgebra homomorphism.

(ii) Let w : P1 → P2 be a D-homomorphism of an orthomodular poset P1 into an ortho-
modular poset P2. Then w is an orthomodular poset homomorphism.

(iii) Let w : B1 → B2 be a D-homomorphism of a Boolean algebra B1 into a Boolean alge-
bra B2. Then w is a Boolean homomorphism.

Proof (i) This result follows immediately from the definition and the basic properties of the
D-homomorphism.
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(ii) It suffices to prove that D-homomorphism of orthomodular posets preserves the
supremum of orthogonal elements. Let a and b be orthogonal elements from an orthomod-
ular poset P , i.e., a � b′. Then

a ∨ b = (a′ ∧ b′)′ = (a′ � b)′ = a ⊕ b,

therefore,

w(a ∨ b) = w(a ⊕ b) = w(a) ⊕ w(b) = w(a) ∨ w(b).

(iii) It suffices to prove that D-homomorphism of Boolean algebras preserves the supre-
mum of arbitrary two elements. We have

a ∨ b = a ∨ ((a ∧ b) ∨ (a′ ∧ b)) = a ∨ (a′ ∧ b),

and hence

w(a) ∨ w(b) ≤ w(a ∨ b) = w(a) ∨ w(a′ ∧ b) ≤ w(a) ∨ w(b). �

It is interesting to observe that if w is a D-homomorphism of an orthomodular lattice P
into an orthomodular lattice T , then, in general, w does not preserves the lattice structure.

Example 3.2 Let L be a 0-1-pasting of Boolean algebras A = {0,1, a, a⊥} and B =
{0,1, b, b⊥}. Let C = {0C,1C, c, c⊥}. We define a mapping w : L → C such that w(0) =
0C,w(1) = 1C,w(a) = w(b) = c,w(a⊥) = w(b⊥) = c⊥. The mapping w is a D-morphism
where w(a ∨ b) = w(1) = 1C and w(a) ∨ w(b) = c.

Denote D the category of D-posets and D-homomorphisms. It is known that D-posets
and effect algebras are equivalent structures, in fact, they form isomorphic categories (cf. [8–
10]). The same is true for their subcategories of D-posets of fuzzy sets and effect algebras
of fuzzy sets (cf. [15, 26]).

Corollary 3.3

(i) The category of orthoalgebras is isomorphic to the corresponding full subcategory of
D.

(ii) The category of orthomodular posets is isomorphic to the corresponding full subcate-
gory of D.

(iii) The category of Boolea algebras is isomorphic to the corresponding full subcategory
of D.

States and observables constitute fundamental notions of quantum probability theory on
D-posets. They are defined as D-homomorphisms cf. [8].

A σ -D-homomorphism x of the σ -algebra B(R) of all Borel subsets of the real line R

into a D-poset T is called an observable (on T ).
A σ -D-homomorphism s of a D-poset P into the unit interval [0,1] with the usual

difference of real numbers is called a state (a probability measure) on P .
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4 ID-posets

Denote I the closed unit interval [0,1] carrying the usual linear order and the usual D-
structure: a � b is defined whenever b ≤ a and then a � b = a − b. Analogously, if X is a
set and IX is the set of all functions on X into I , then we consider IX as a D-poset in which
the partial order and the partial operation � are defined pointwise: b ≤ a iff b(x) ≤ a(x)

for all x ∈ X and a � b is defined by (a � b)(x) = a(x) − b(x), x ∈ X. A subset X ⊆ IX

containing the constant functions 0X , 1X and closed with respect to the inherited partial
operation “�” is a typical D-poset we are interested in; we shall call it a D-poset of fuzzy
sets.

Clearly, if we identify A ⊆ X and the corresponding characteristic function χA ∈ IX ,
then each field A of subsets of X can be considered as a D-poset A ⊆ IX of fuzzy sets: A is
partially ordered (χB ≤ χA iff B ⊆ A) and then χA �χB is defined as χA\B provided B ⊆ A.

Further, assume that I carries the usual sequential convergence and that IX and other D-
posets of fuzzy sets carry the pointwise sequential convergence. In what follows, we identify
I and I {x}, where {x} is a singleton. Let A be a field of subsets of X considered as a D-poset
of fuzzy sets and let p be a probability measure on A. Then p as a map of A ⊆ IX into
I is sequentially continuous and preserves the D-poset structure. For more information
concerning the σ -additivity and the sequential continuity of measures see [13].

Denote ID the category of all reduced D-posets of fuzzy sets (each two points a, b of the
underlying set X are separated by some fuzzy set u ∈ X ⊆ IX , i.e. u(a) �= u(b)) carrying
the pointwise convergence as objects and the sequentially continuous D-homomorphisms as
morphisms. Note that the assumption that all objects of ID are reduced plays the same role
as the Hausdorff separation axiom T2: limits are unique and the continuous extensions from
dense subobjects are uniquely determined. Observe that since objects of ID are subobjects
of the power IX , in proofs of many propositions concerning objects of ID we can use the
powerfull categorical machinery, e.g., the properties of categorical products. Concerning
categorical terminology and constructions the reader is referred to [1].

A typical (classical) object of ID is the evaluation of a field of sets. Let A be a field
of sets and let P(A) be the set of all probability measures on A. For A ∈ A, put A∗ =
{p(A);p ∈ P(A)} ∈ I P(A) and denote A∗ = {A∗; A ∈ A}. Then A∗ is called the evaluation
of A; observe that A∗ is not anymore a field of sets. Using basic properties of probability
measures, it is easy to check that A∗ is a D-poset of fuzzy subsets of P(A) and that A∗ and
A are isomorphic as D-posets. From the viewpoint of P(A), A∗ “carries more information”
than A. Further details can be found in [15, 24].

Example 4.1 Let A be a field of subsets of X. If we consider A as a D-poset (the partial order
is defined via inclusion and the difference is defined by A � B = A \ B whenever B ⊆ A)
then A is a bounded distributive lattice with X and ∅ as the top and the bottom elements.
If h is a D-homomorphism of A into a field of sets B, then (see Theorem 3.1) h can be
considered as a Boolean homomorphism of A into B. This means that the difference partial
operation is “rich enough” and provides all the necessary information about the structure
of a field of sets. Now, let p be a D-homomorphism of A into I . It is straightforward to
check that p is an additive probability measure (if p is sequentially continuous, then p is
σ -additive). More details can be found in [25] and [17].

Denote FS the category having fields of sets as objects and sequentially continuous
Boolean homomorphisms as morphisms. It is known that a field A of subsets of X is a
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σ -field iff A is sequentially closed in {0,1}X . Denote CFS the full subcategory of FS con-
sisting of σ -fields (recall that a subcategory B of A is full whenever each A-morphism of a
B-object into a B-object is also a B-morphism).

Denote FSD the full subcategory of ID consisting of fields of sets considered as D-posets
and denote CFSD its full subcategory consisting of σ -fields.

Proposition 4.2

(i) The categories FS and FSD are isomorphic.
(ii) The categories CFS and CFSD are isomorphic.

Example 4.3 Let X ⊆ IX be a bold algebra of fuzzy sets. If we consider X as a D-poset,
then X is a bounded distributive lattice with 1X and 0X as the top and the bottom elements.
Let h be a D-homomorphism of X into a bold algebra of fuzzy sets Y ⊆ IY . In general,
h need not be an MV-algebra homomorphism of X into Y . Indeed, let B be the σ -field of
Lebesgue measurable subsets of [0,1]. Let p be the Lebesgue measure on B. Consider B

and [0,1] as bold algebras and p as a D-homomorphism of B into [0,1]. For A,B = [0,1/2]
we have χA ⊕ χB = χA and p(A) �= p(A) ⊕ p(B) = 1/2 + 1/2 = 1. This means that in
this case the difference partial operation is “not rich enough” and does not provide enough
information about the structure of a bold algebra of fuzzy sets. Now, let s be a sequentially
continuous D-homomorphism of X into I . It is known that s is a state. More details can be
found in [13].

Denote BID the full subcategory of ID consisting of bold algebras of fuzzy of subsets
considered as D-posets and denote CBID its full subcategory consisting of Łukasiewicz
tribes.

In the fuzzy probability theory (cf. [3, 4, 17, 18]), the fuzzy events form special bold
algebras of fuzzy sets, namely, the set of all measurable functions into I ; more details will
be given in the next section.

Now we are in a position to give a full answer to Question 2.1.

Answer 4.4 Traditional probability domains such as fields of sets (σ -fields of sets) and bold
algebras (Łukasiewicz tribes) can be viewed as full subcategories of ID, probability mea-
sures on fields of sets and states on bold algebras become morphisms (structure preserving
maps).

Since D-posets of fuzzy sets (i.e. objects of ID) generalize traditional probability do-
mains, it is natural to define states on D-posets of fuzzy sets as morphisms into I .

The category ID is cogenerated by I : the objects are subjects of powers IX . In plain
words, in every ID-probability domain X ⊆ IX (an object of ID) “everything is determined
via states” (morphisms into I ):

1. States separate generalized (fuzzy) events;
2. Order, difference, and sequential convergence are categorical (initial with respect to all

states, e.g., a sequence {un} converges to u in X iff the sequence {s(un)} converges to
s(u) for each state s);

3. The categorical machinery is available and in “chasing diagrams” a key role is played by
states.

Let X ⊆ IX and Y ⊆ IY be ID-objects. Recall that the pairs (X, X ), (Y, Y) are called
ID-measurable spaces and a map f : X −→ Y such that u ◦ f ∈ X of all u ∈ Y is
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called ID-measurable. On the one hand, if f is measurable, then u �→ u ◦ f yields a D-
homomorphism f ← of Y into X which is sequentially continuous, hence an ID-morphism.
On the other hand, if h is an ID-morphism of Y into X and Y is sober (i.e. each ID-
morphisms of Y into I can be represented by a point evaluation at some y ∈ Y ), then there
exists a unique measurable map f such that h = f ←; this yields a duality between ID-
morphisms and ID-measurable maps, i.e., observables and fuzzy random variables in the
fuzzy or operational probability developed by in [2, 5, 21].

The “categorical” proofs of the continuity of f ← and the duality via diagrams (cf. [12,
24]) are rather straightforward and transparent in comparison to the original proofs via func-
tional analysis (cf. [3, 4]).

In the category ID, the extension of states from a field of sets A to the generated σ -field
σ(A) and from a bold algebra X ⊆ IX to the induced Łukasiewicz tribe σ(X ) ⊆ IX become
epireflections (see [17, 20]).

5 States in Fuzzy Probability

Consider the following two fundamentally different probability theories: classical Kol-
mogorovian and fuzzy (the former is called standard and the later is called operational in
[3, 4]). Both theories can be “embedded” into the category ID in a canonical way. Moreover,
they are particular cases of a generalized ID-probability theory.

Question 5.1 What is the categorical background of the transition from classical to fuzzy
probability theory?

Let (X,A), (Y,B) be classical measurable spaces and let f : X −→ Y be a map. If f

is measurable, then the (dual) preimage map f d : B −→ A defined by f d(B) = f ←(B)

= {x ∈ X; f (x) ∈ B}, B ∈ B, is a sequentially continuous (the pointwise convergence of
characteristic functions) Boolean homomorphism of B into A. Indeed, the assertion is a
corollary of the following straightforward observation.

Observation 5.2 For each B ⊆ Y we have χf ←(B) = χB ◦ f and the measurability of f is
equivalent to the following condition

(M) (∀B ∈ B) (∃A ∈ A) [χB ◦ f = χA].

Observation 5.3 If p is a probability measure on A, then the composition p ◦ f d = pf

is a probability measure on B. This sends probability measures P(A) on A to probability
measures P(B) on B. This way we get basic notions of probability theory: random events, a
random variable f , its distribution pf , and the observable f d .

In the fuzzy (or operational) probability theory, we start with a map T of P(A) into
P(B) satisfying a natural measurability condition which guarantees the existence of a dual
map T d of all measurable functions M(B) of Y into the closed unit interval I = [0,1]
into all measurable functions M(A) of X into I so that T d is a sequentially continu-
ous D-homomorphism. This way M(A) and M(B) become generalized random events,
T becomes a fuzzy random variable, T d becomes a generalized observable, and each D-
homomorphism into I becomes a state. Measurable functions into I can be considered as
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bold algebras. States on bold algebras are exactly D-homomorphisms into I but, in gen-
eral, a D-homomorphism need not be an MV-algebra homomorphism. Note that for each
Łukasiewicz tribe X ⊆ IX there exists a unique σ -field A of subsets of X such that X is
contained in the Łukasiewicz tribe M(A) of all measurable functions into I and if X con-
tains all constant functions cX, c ∈ I , then X and M(A) conicide; such tribes are called
generated and form a full subcategory CGBID of ID.

The two probability theories, classical resp. fuzzy, “live in” the full subcategory CFSD
of ID consisting of σ -fields, resp. the full subcategory CGBID of ID consisting of generated
Łukasiewicz tribes (each is of the form of all measurable [0,1]-valued functions on a σ -
field). It was proved in [20] that sending A to M(A) yields a functor

F : CFSD −→ CGBID

which is bijective on objects (to each generated Łukasiewicz tribe X there corresponds a
unique σ -field A such that F(A) = M(A) = X ) but, barred the trivial case, it fails to be
bijective on morphisms.

Observation 5.4 In the Kolmogorovian probability, extending a field of sets A to the gen-
erated σ -field σ(A) we pass to a larger probability domain which has the same probability
measures and it has some additional properties (e.g. it is σ -complete). In the fuzzy proba-
bility, extending crisp events A = σ(A) to M(A) we pass to a larger probability domain
which has “the same states” and it has some additional properties. From the categorical
viewpoint, both extensions are epireflections.

Theorem 5.5 F is an epireflection.

Proof Let B be a σ -field. First, recall that probability measures on B are exactly ID-
morphisms to I . Second, each probability measure p on B can be uniquely extended (via
step functions and the Lebesgue Dominate Convergence Theorem) to an ID-morphism pM
(integral) over M(B). Third, let h be an ID-morphism of B into an object M(A) of CGBID.
Since M(A) is a subobject of powers of I , it follows from the first step and the usual
categorical product argument (h followed by a projection of I P(A) into any factor I is a
morphism of B into the factor in question, hence it can be extended over M(B) and this
implies the existence of a map of M(B) into M(A) having the desired properties) that h

can be uniquely extended to an ID-morphism hM of M(B) into M(A). �

Theorem 5.6 Let B be a nontrivial σ -field of sets and let M(A) be a generated Łukasiewicz
tribe. Then there exist an ID-morphism h of B into M(A) and its extension to an ID-
morphism hM of M(B) into M(A) such that for each ID-morphism g of B into A we
have hM �= F(g).

Proof Let q be a probability measure on B and let T be the degenerated fuzzy random
variable sending each p ∈ P(A) to q . Let T d be the dual observable which maps M(B) into
M(A) and let h be the restriction of T d to B. It is known (cf. [18]) that h maps each B ∈ B
(its characteristic function χB ) to the constant function the value of which is q(B). Assume
that q is nontrivial, i.e., there exists B ∈ B such that 0 < p(B) < 1. Then h(B) belongs to
M(A) \ A. The ID-morphisms h can be extended to an ID-morphism hM of M(B) into
M(A), but for each ID-morphism g of B into A we have hM �= F(g). �

Theorem 5.5 and Theorem 5.6 give at least partial answer to Question 5.1.
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Answer 5.7 Each classical probability domain (a σ -field of sets) has a unique epireflection
into the fuzzy probability domains (generated Łukasiewicz tribes) so that both domains have
“the same” states. However, the transition from classical probability to fuzzy probability
is not conservative. Within the later there are observables having quantum character not
captured by the classical observables.

6 Conclusion

As shown in the previous sections, the category ID is rich enough to serve as a base category
in which both the classical and the fuzzy probability theory can “live in” and fundamental
notions such as random events, observables and states become intrinsic. The full subcate-
gories CFSD and CGBID model the classical and fuzzy probability theory, respectively. The
fuzzification, i.e., the transition from classical to fuzzy theory has a meaningful categorical
interpretation.

As shown in [18, 19] and [25], even more general theory can be developed within ID so
that the two theories mentioned above become special cases. Indeed, objects of ID can be
defined as probability domain, measurable maps as generalized random variables, the dual
maps as generalized observables, and ID-morphisms into I as generalized states.
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